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J .  PHYS.  A ( P R O C .  P H Y S .  SOC.) ,  1968, S E R .  2 ,  V O L .  1 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Transport of energy and momentum by gravitational waves 
from a rotating rod: the linear approximation 

M. A. ROTENBERG 
The Negev Institute for Arid Zone Research, Beersheva, Israel 
MS.  receiaed 28th June 1967 

Abstract. Gravitational waves emitted from a spinning rod-taken as a rigid axially 
symmetric distribution of matter of uniform small cross section-are studied within 
the framework of general relativity, with special interest on transport of linear 
momentum from the rotating source. I t  is found that linear momentum is carried 
by the waves cyclically in such a way that the centre of rotation is a fixed point outside 
the axis of symmetry of the rod. 

Two results for the rate of momentum flux, differing in numerical content, are 
derived from the solution of the linear approximation, one by the use of Synge’s 
argument involving the energy-momentum tensor, and the other by means of the 
pseudo-tensor. The  discrepancy between the results is explained. 

1. Introduction 
Transport of energy by gravitational waves from a rotatitig source has been fairly 

extensively investigated during the last few decades since the invention of general relativity 
(Einstein 1916, 1918, Eddington 1924, p. 248, Clark 1947, Weber 1961, $7.6). That a 
spinning rod loses energy at a steady rate as gravitational radiation is a familiar result. It has 
also been shown that a bounded cohesive rotating source, such as the rod or an ellipsoid, in 
general gradually loses its angular momentum (Clark 1947). The question that seems not to 
have been previously studied is whether gravitational waves carry linear momentum from a 
rotating source, thus causing movement of the centre of mass of the source. If linear 
momentum transport does occur, then it is expected to be of a cyclic nature of a kind that 
will make the source rotate about a fixed point not coincident with its centre of mass. The  
main object of this work is to establish the existence of transport of linear momentum of this 
sort by gravitational waves from a rotating rod, starting with the solution of the linear 
approximation to the gravitational field equations? 

Rik = 0 

for free space, using two methods: (i) Synge’s argument which involves the energy- 
momentum tensor Tik ;  (ii) the pseudo-tensor tici. 

The leading moments of the energy tensor for the spinning rod are evaluated in $ 2 
and are needed in $ 3 to derive the solution, for the rod, of the linear approximation to (1.1). 
Using the two methods enunciated above, in $ 4 alternative values for the 4-momentum 
flux of gravitational radiation from the spinning rod are calculated, and then the difference 
between the two values is explained. 

2. Calculation of the leading moments of the energy tensor for the rotating rod 
In  the linear approximation to (1.1) we shall assume that distance, time and mass have 

their Newtonian meanings. 
We choose a (pseudo-) rectangular Cartesian coordinate system Oxyx in which the rod 

A,OA, of mass m, length a and small uniform cross section S rotates with constant angular 
velocity w in the plane Oxy about the origin 0. In the linear approximation we shall 

t In this paper, unless otherwise stated or implied, a roman index ranges from 1 to 4, as in (1-l), 
and a Greek one from 1 to 3 ; the summation convention applies to both forms of index. 
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98 M. A. Rotenberg 

assume that the centre of mass of the rod coincides with 0.t Let us choose the origin of 
time t such that the axis of symmetry of the rod coincides with the axis Ox at t = 0;  thus, 

at time t ,  xOA, = wt. 
We write OAi = aki (i = 1,2) and consider any point Q on the rod, so that 

OQ = a< (-Al < < < k2) .  Let p be the volume density at Q. Then, from elementary 
dynamics it is readily found that the stress at Q at time t is given by 

n 

where 

are dimensionless quantities independent of m and a. Knowing this stress at Q and the 
velocity of Q at time t we can proceed to calculate for the rod the quantities 

V being any fixed space volume enclosing the rod. These quantities are the moments, 
at time t about the coordinate planes, of the energy tensor Tik corresponding to any material 
distribution. We use the formula (Eddington 1924, 5 53, Bergmann 1942, p. 127) 

( 2 . 5 )  Tik = tik +pUiUk,  ta4 = p a 4 ,  ta4  = t44 = 0 

which, in the linear approximation and in Galilean coordinates xi, expresses Tik for any 
material distribution in terms of the stress tensor p a 4 ,  volume density p ,  and the 4-velocity 
zii (= U", 1) of that particle of matter which passes through the field point x, at time x 4 .  

Calculating (for the rotating rod) the dimensionless moments hikigor... of Tlk,  defined by 

- ~ct4,u1u2...G. 

mas + 

~ c t 4 , u 1 u  2. . .u8  - 

by the method outlined above, we find for the leading non-zero components the following 
values : 

h4, = 1 

2 
hlq = whsc, 

2 
h44/22 hs2 J 

i. Admittedly, it is our primary purpose to establish a difference between the centre of rotation 0 
and the centre of mass. Nevertheless, this difference is of an order pertaining to the non-linear 
approximation to (l.l), although its calculation is based on the solution of the linear approximation. In  
this approximation it is therefore correct to assume that the centre of mass is the centre of rotation 0. 
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In  these 
s = sin u t ,  c = cos at; (2.10) 

n 
h (n = 0, 1 ,2 ,  ...) are dimensionless quantities independent of m and a and given by 

(2.11) 

n 
where I (n  = 0, 1,2, ...) are the nth moments of the rod about its centre of mass. I n  
evaluating the above moments we used the fact that 

0 1 1 n + 2  
(n  = 0, 1,2, ...). 

(2.12) 
cnh(l) d( = - - h 

J:kl n+l  
h = l ,  h = 0 ,  

The formulae (2.7) to (2.9) will be needed in the next section. 

3. Solution of the linearized field equations 

solution of the linearized form of the field equations (1.1). 

let us suppose that 

where q i k  = T~~ = diag( - 1, - 1, - 1, + 1) and y1.k are small. We introduce the auxiliary 
quantities y& by 

so that 

and select (pseudo-) Galilean coordinates which satisfy the harmonic condition 

Using Galilean coordinates xi we derive for the rotating rod an appropriate external 

Let us consider, first of all, any isolated cohesive material distribution. For weak fields 

#Zk = VZk f Y i k  (3 .1)  

Y r k  = Y l k - h i k V a b y a b  (3 -2) 

Y l k  Y ? k k b i k q a b y 2 b  (3-3)  

? l a b y k , b  = (3 *4) 

(3 -5) 

where the comma means partial differentiation. The linearized form of the field equations 

R Zk -1 2 g i k  R = - 8 T T i k  

then reduces to the wave equations (Eddington 1924, 4 57, Landau and Lifshitz 1962, 

T a b y f k , a b  = - 1 6 ~ T i k  (3.6) 
§ 101) 

their solution in Kirchhoff form for outgoing waves being 
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Here the integration is taken over any fi3ed space volume V containing all the sources of 
the field and+ is the distance of the point P(Q,  connected with the space element dXl dg2 dx", 
of integration, from the field point P(x,) under consideration. The  second part of (3.7), 
immediately deducible from (3.4) and (3.6), simply expresses the law of conservation of 
energy and momentum in the linear approximation-a result already assumed in $ 2  for 
the spinning rod in the calculation of the values (2.7) to (2.9) for the leading dimensionless 
moments hiklupZ.. .  of the corresponding T,. 

It will be useful to have the formula in the first of (3.7) expressed as a multipole 
expansion in terms of r instead of Y* (where r is the$xed radius vector OP), before its 
application to the rotating rod. With the centre of mass taken as the origin 0, the result is 
the (external) multipole wave solution, given below, of the linear approximation to (1.1) 
(Rotenberg 1964, appendix A), valid for Y not less than the radius of the smallest 
sphere, with centre 8, which can surround the entire physical distribution at all times; 
this expansion, in ascending powers of a, is written explicitly up to order a3: 

(3  4 * 
ya4 = -4ma2y-lha4 -44ma3n,(~-1h6Bia+~-2ha41u) +mO(a4) 
8 

ya4 = -4ma2nu(r -1h&,,, + Y -2h,4,u) 

y44 = -4mr-Ih4, -~ma2{r-1nunph(;4,,L1+(3nunp-8uL1)(~-2h~4,ap+~-3h44,,p)} 

- ~ m ~ ~ { ~ - ~ n , n $ ~ ~ , ' , ~  + (3n~np-8 ,L1) (~ -2h~4 iup  + ~ - ~ h ~ ~ ~ ~ , , ) ) + m O ( a ~ )  (3 .9)  
* 

- ~ m ~ ~ { r - ~ n , n ~ n ~ h k ) k , ~ ~ ,  + 3 ~ - ~ n , , ( 2 n ~ n ~  - 8PZ)h~4,u,,z 

+ 3nu(5npnr - 3%df,-3hk4,upz + Y - 4 ~ 4 4 / u p r ) } +  W a 4 )  (3.10) 

qabTin,b = 0. ( 3 . 1 1 )  
where 

In  this expansion 

n, = XJY; (3.12) 

the dimensionless moments hzkiUpz,..  of Ttk,  introduced from (2.6) and (2.4), are to be 
evaluated for the retarded time U = t -Y  and a prime denotes differentiation with respect 
to U .  

Inserting (2.7) to (2.9) in (3.8) to (3.10) we obtain for the rod the following multipole 
wave solution, valid for Y > max{ak,, ak,}, written explicitly up to order a3:  

* 1* 
Y i k  = 

where the non-zero $zi are 

(3 .13)  

I *  2 
yll = 4 2 h ~ ~ r - ~ (  1 - 2s') 

3 
- 2 ~ ~ h [ : ~ ~ ~ ~ { A ( 7 s - - 9 9 s ~ ) + p ( 8 ~ - 9 ~ ~ ) )  + ~ ~ r - ~ { A ( Z c - 3 c ~ )  -p(s -3s3)}]  +O(a4)  

(3.14) 

1 2 3 
y:2 = 8 ~ ~ h w ~ r - ~ s c + 6 n ~ h [ w ~ ~ - ~ ( - h ( 2 ~ - 3 c ~ )  +p(2s-3s3))+ W ' Y - ~ ( A ~ C ~  +ps2c)] + O(a4) 

( 3 . 1 5 )  

I* 2 
7 2 2  = - 4a2hw2~ -I( 1 - 2s') 

+2a3a[to3rv1{A(8s-9s3) +p(7c-9c3)}+ w ~ Y - ~ { A ( c - ~ c ~ ) - ~ ( ~ s - ~ s ~ ) ) ]  + O(a4) 
(3.16) 
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I* 2 
~ 1 4  = - 4a2h[w2r-1{h( 1 - 2s') + Zpsc} + w ~ - ~ ( h s c  + ,us2)] 

+ 2a3?q,w3r-1{h2(7s - 9s3) + ZXp(7c - 9c3) - 3p2(2s - 3s3)} 

- w ~ - ~ { ( 3 h '  - 1)s~' + 6hps2c + (3p2 - l)s3}] + O(a4) 

+ ~ ' ~ - ~ { ( 3 h ~ -  1 ) ( 2 ~ - 3 ~ ~ ) - 6 X p . ( 2 ~ - 3 ~ ~ ) - 3 ( 3 , ~ ' -  1)s '~ )  
(3.17) 

1 2 
y t 4  = 4a2h[w2r-1{-2hsc+p(1 -2s2)}+ ~ r - ~ ( X c ~ + p s c ) ]  

+ 2 a 3 ~ [ w 3 r - 1 { 3 h 2 ( 2 ~  - 3c3) - 2Xp(7s - 9s3) - p2(7c - 9c3)} 

+ ~ r - ~ { ( 3 h '  - l )c3 + 6Xpsc' + (3p' - 1)s2c)] + O(a4) 

+ U'Y-'{ - 3(3Xz - l)sc2 - 6 h p ( 2 ~  - 3c3) + (3p' - 1)(2s - 3 ~ ~ ) )  
(3.18) 

y44 1% = -4r-1+2a2R[2w2r-1{(h2-p2)(1 -2s2) +4hpsc} +6wr-2{ (h2-pL2)s~-hp(1  -2s')) 

- ~ - ~ { ( 3 h ' -  1 ) ~ ~ + 6 X p ~ ~ + ( 3 p ' -  l ) ~ ' ) ]  
3 

- 2a3h[w3r-l{h3(7s - 9s3) + h2p(20c - 27c3) -hpZ(20s - 27s3) -p3(7c - 9c3)} 
+ ~ ~ r - ~ ( 3 h ( 2 X ' -  1 ) ( 2 ~ - 3 ~ ~ ) - p ( 6 h ~ -  1)(7s-9s3)-X(6p2- 1)(7c-9c3) 
+ 3p(2p2 - 1 ) ( 2 ~  - 3 ~ ~ ) )  
+ 3wr-3{ -h(5h2 - 3)scZ -p(5h' - 1)(2c - 3c3) +h(5p' - 1)(2s - 333) + p(5p2 - 3)s'c) 
+ ~ - ~ { X ( 5 h ' - - 3 ) ~ ~  +3p(5X2 - l)sc'+ 3h(5p2- l)s2c+p(5p2 - 3)s3}] + O(a4) .  (3.19) 

I n  the above formulae 

and instead of (2.10) 
(A, I*., .) = n, = X,/Y (3.20) 

s = sin wu, c = cos wu, U = t - r .  (3  21) 

It can be verified by lengthy, but straightforward, calculations that the solution (3.13) 
to (3.19) actually satisfies the linearized field equations (3.4) and 

for free space. 
We notice that the values for y$ given by the multipole wave solution (3.8) to (3.10) 

of the linearized field equations, for any isolated coherent material source of mass m, are 
linear in m. This suggests that an appropriate exact external solution of (1.1) for any such 
source is expansible as an infinite power series in m: 

qaby?k,ab = (3  -22) 

(3.23) 

where ;:k are independent of m, with the set of coefficients G:i of m given by that in (3.8) 
to (3.10).? Inserting (3.23) in (1.1) and equating to zero the coefficients of mp in the result 
yields the pth approximation 

P 
Rik = 0. (3 24)  

I t  consists of ten second-order differential equations of the forms 

@"$lY.) = +l" (Q P -  1)  (3  2 5 )  

7 Since, by virtue of (3.8) to (3.10), the set $z t  itself is equal to an infinite expansion in ascending 
powers of a, a double infinite series in ascending powers of m and a for the metric has been considered 
by Bonnor in the study of gravitational waves (see Bonnor 1959, 1963, Bonnor and Rotenberg 1966). 
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where the left-hand sides are linear in ;& (and their derivatives), and the right-hand sides 
are non-linear in 7; (and their derivatives) known from solutions of the previous, qth, 
approximations. 

The  appropriate exact external solution for the spinning rod, although not explicitly 
known beyond the first approximation, will be referred to in the next section as (3.23) and 
(3.14) to (3.19). Furthermore, it will be assumed that the metric for the rod can be expanded 
in powers of m as in (3.23) throughout the entire space-time, including the neighbourhood of 
the rod, and that the form of the appropriate solution of the linear approximation is as in 
(3.13) throughout all space-time. 

4. Calculation of the rates of energy and momentum flow 
In  obtaining expressions for the rates of flow of energy and momentum from the rotating 

rod we shall employ both (i) the ordinary energy-momentum tensor with use of what is 
known as ‘Synge’s argument’ and (ii) the energy pseudo-tensor, and then compare results. 
4.1. Use of the energy-momentum tensor 

Here we use an argument due originally to Synge (1960, chap. IV, $ 6), which is lucidly 
explained by Bonnor (1959, $11). It concerns approximate solutions of the field equations 
for any gravitating source; for an isolated coherent source Z it goes as follows. 

Let us take any approximate solution of (1.1) corresponding to the source Z, Substitut- 
ing the solution into 

G; 5 ~2 - $ 6 , ; ~  = - g=~; (4-1) 

we can obtain an expression for the energy tensor T,’ which corresponds to it. This will not 
vanish anywhere, unlike the case of an appropriate exact solution in which Tki vanishes 
everywhere except for the region occupied by Z. Thus for the approximate solution under 
consideration a continuous distribution of matter (and stresses) will appear throughout 
space-time, and this distribution? together with Z may be regarded as representing the 
‘source’ of the approximate solution; in other words, the approximate solution of (1.1) may 
be considered as an exact solution of (4.1) corresponding to the augmented source. 

Now, let us apply this argument to the approximate wave solution (3.13) to (3.19) for 
the spinning rod introduced in $2. After some lengthy calculation we obtain$ 

(4.2) 

(4.3) 

Ai = 77iaXU,  xi = p A , ,  huh, = 0; (4.4) 

1 
m 

-8nT,> = m2 Y - ~ X ~ A ,  2 aSK(,,+L,Z+O(r-3) +O(m3). 1 s = 4  

In  this 

so that 
hi = u , ~  = (--ne,  l), A‘ = (na,  1) 

2 
K(4) = 16wsh2{2 - 2(X2 + ii2) + (A4 - 4A2p2 +p4)} 1 (4.5) 

I 2 3  
K(5) = 2 w 7 h h ~ { 5 4  - (45X2 + 59,Z2) + (1 17X4 - 197X2p2 + 28ii4)), .. . 

t Hereafter to be referred to as the ‘phoney’ matter corresponding to the approximate solution. 
$. In terms of yTk that constitutes the multipolewavesolution (3.13) and (3.8) to (3.10) ofthe linear 

approximation for any isolated coherent material source, the value of the Einstein tensor G k !  is 
(Rotenberg, to be published). 

1 

1 1  1 1  
G k !  = m’[h‘&(+y*y,?* +&$: - & * a b j % . 4 4  - ~ * n b . 4 Y % . 4 )  

+ r - l 1 7 ’ ” { 2 ( j ~ k - h a j ~ 4 - h i c j X . l )  + ( r l a k - h a 8 i c 4 - h ~ ~ , 4 ) j * } , 4 4  +0(~-3 )1+0(m3)  
where + = - a b 1 *  j * i k  = , ! a , k b j 2 .  77 Y o b ,  
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where 

and 
X = Acoswu+psinwu, F = -Xsinwu+pcoswu; (4.6) 

(4.7) 

(4.8) 

1 
L; = y-1q"{2($& -'uy$4 -'k$% f X u ' k 2 4 )  f ( q a k  - '~'k4 +'aXh)?},44 

where 

- - ab1* - 7 Yub.  

Thus, for Y > max{ak,, ak,), the approximate solution (3.13) represents exactly the 
distribution which is composed of the rod and the tenuous ('phoney') matter described by 
the energy tensor Tki given by (4.2). 

From (4.2) the rates at which mass and momentum of the 'phoney' matter flow out of a 
large sphere S,  with centre the origin 0 and radius Y, can be readily calculated as below. 

I t  can easily be shown that Lki in (4.7) satisfies (Rotenberg, to be published) 

Loana = O ( Y - ~ ) ,  L," = 0. (4.9) 
Hence, from (4.2), we have 

- = Zrpn,dS = - X , K , , , ~ ~ + O ( Y - ~ ) + O ( ~ ~ )  (4.10) 
dJ,Lp) 

dt S 

where Jk(P)(t) is the covariant 4-momentum of the 'phoney' matter that has flowed out of the 
sphere S by time t, and where the integration on the extreme right is to be carried out over 
the surface SZ of a unit sphere with centre 0. Using (4.5), (4.6), (4.3) and (3.20) in (4.10), we 
obtain, for the rate at which the covariant 4-momentum of 'phoney' matter flows out of S,? 

(4.11) I 2 3  
a5w7hh( -sin wu, cos wu, 0) + o(a6)) + 0 ( ~ 3 )  

dJJP) 
dt 

32 
dt 5 

ignoring terms of order Y - ~  for large Y .  
The result (4.11) implies that, to maintain the field (3.13), i.e. to maintain the constancy 

of the 4-momentum of the rod, matter must be extracted out of S with 4-momentum flowing 
out at the rate (4.1 1). But in the actual physical situation no such matter exists. I t  therefore 
follows that the 4-momentum of the rod must increase (or, to be more precise, vary) at the 
rate given by (4.1 1) with replacement of U by t .  Hence at any time t the 4-momentum Jk of 
the rod varies at the ratel 

on account of the outward flow of 4-momentum of the wave field. 
If we were to pursue the approximation to the metric for the rod up to the second order 

of m, i.e. solve (3.24) ( p  = 2) for y& in terms of the known y& we would most probably 

find expressions in y& representing a rate of change of 4-momentum of the rod equal and 

t The  notation O(mp) in (4.11) and elsewhere denotes any expression in the form of a power 

$ dJs/dt most probably vanishes on physical grounds. 

2 1 

2 

series, in both m and a, comprising terms of orders &as (q 3 p ,  s 3 0). 
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opposite to the rate of 4-momentum flux of the wave field, given by the leading (m2) 
contributions in (4.12). (We would then obviously find that no flux of 4-momentum of 
‘phoney’ matter calculated from the second approximation existed in that approximation.) A 
confirmation of this is intended by the author for a future paper. 

For the contravariant 4-momentum J k  we have, from (4.12), 

since, from (3.1), (3.3) and (3.23)) 

P = - J , + o ( ~ ~ ) ,  J 4  = J4 + O(m3).  (4.14) 

Neglecting terms of order as and m3 we obtain the following two results: 
(i) The spinning rod Ioses mass at the steady rate 

d m  32 2 - _- - - .-I2w6 
dt 5 

(4.15) 

n 
where I is its nth moment about its centre of mass, as in (2.1 1). This is the result obtained 
by Eddington (1924, p. 248) using a different method, and by Weber (1961, $ 7.6) using the 
pseudo-tensor employed later on in this section. 

(ii) The linear momentum of the rod varies cyclically at the rate 

d e f d J  172 23  

dt 35 
F = - = - IIw7(sin w t ,  -cos w t ,  0). (4.16) 

This is equivalent to a centripetal force F acting on the rod perpendicularly to it through its 
centre of mass. The effect of the gravitational waves is to supply a centrifugal force -F 
perpendicular to the rod through its centre of mass. Thus the centre of rotation of the rod is 
not its centre of mass, but a fixed point 0 distant 

23 
172 I I ~ ~  a=- - -  
35 m 

(4.17) 

from the axis of symmetry of the rod on the line perpendicular to the rod through its centre 
of mass. In other words, the rod moves as a tangent of the circle, centre 0 and radius 6, 
rotating around the circle with angular velocity w ;  the centre of mass of the rod is always 
kept as the point of contact between the rod and the circle. 

4.2. Use of the pseudo-tensor 

tion law (Eddington 1924, $59, Tolman 1934, $ 87) 

Obtaining result (ii) was the main object of the paper. 

The energy tensor density Zki and the pseudo-tensor tki are connected by the conserva- 

(4.18) 

where xi are the Galilean coordinates used throughout. If S is a two-dimensional sphere, 
centre 0 and large radius Y, containing space volume V and enclosing all the sources of the 
field, then from (4.18) 

(4.19) 
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where nCc = x,/r are the components of the outward space normal to S. Since z k '  = 0 on S, 
this gives 

(4.20) 

which is the usual integral theorem referring to the energy and momentum of the field; the 
surface integral term on the right represents the rate of flux of 4-momentum Jk of the field 
out of S. Thus we may write 

(4.21) 

and we now calculate the surface integral on the right for the rotating rod. 
For the pseudo-tensor we use the usual formula (Eddington 1924, 4 59, Tolman 1934, 

1 6 ~ t ;  = g a b , k r a ;  - g a i , k r a b b  + a;gyrlbarmab - r lmarabb)  (4.22) 

and substitute into it the external wave solution relevant to the rod, represented by (3.23) 
and (3.14) to (3.19). We evaluate only the leading term in the resulting expansion in ascend- 
ing powers of m for t k t ,  as we did in calculation of Tk'; it is of order m2, as the formula (4.22) 
consists essentially of products of the $k , l )  which by virtue of (3.23) are of order m. I t  
makes no difference if we substitute into (4.22) the exact solution (3.23) or the approximate 
solution (3.13) as far as this leading term is concerned, since a choice between the two solu- 
tions only affects contributions of order m3 and higher in t k ' .  Hence the reason for not 
proceeding further than the linear approximation to the wave solution in 3. 

The result of substitution of (3.13) into (4.22) is, after some calculation,t 

§ 87) 

m 

t i  = m2 r - 2 h ' h k  c asw(,) + o(r -3 ) )  + 0 ( ~ 3 )  
s = 4  

where A,, At are as in (4.3) and where 

4 2  
w ( 4 )  = w5h2{1 - ( ~ 2  +,PI + x2py 

1 2 3  
w ( ~ )  = - w7hhii(12-(13X2 + 12,ii2) - (7X4-20X2ji2)), 

T 

with 
X = Acoswu+psinwu, it = -Asinwu+pcos 

Using (4.23) and (4.3)) (4.21) gives 

... 

O U  * 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

for the rate offlow of JI, out of the sphere S, where L2 is the unit sphere with centre 0. Then 

t In terms of constituting themultipolewave solution (3.13) and (3.8) to (3.10) for any isolated 
cohesive mechanical system, the value of t k '  is (Rotenberg, to be published) 

1 1  
1 6 ~ t k '  = m 2 { A f h k ( ~ * a b , 4 y ~ b , 4  -$:;,$) +0(m3) 

where 

;* = ;*lk = rltarlkbj,*b. 
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from (4.24), (4.25), (4.3) and (3.20) we have, ignoring terms of order r - l  for large Y ,  

Ignoring contributions of order u6 and m3, we obtain from (4.27) and (4.14) the following 
two results, similar to (4.15) and (4.16), respectively, but the second differing numerically 
from (4.16): 

(i) On account of J4 flux, the rod loses mass at the constant rate 

(4.28) 

(ii) On account of JB flux, the linear momentum of the rod varies cyclically at the rate 

d e I d J  464 2 3  

dt 105 
F = - = -11 "(sin u t ,  -cos u t ,  0) .  (4.29) 

This corresponds to a centripetal force F acting on the rod perpendicularly to it through its 
centre of mass. Thus the centre of rotation of the rod does not coincide with its centre of 
mass, but is a fixed point 0 distant 

8 = --- 
105 m 

(4.10) 

from the axis of symmetry of the rod on the line perpendicular to the rod through its centre 
of mass. 

The reason for the discrepancy between the two numerical results (4.16) and (4.29) is the 
following. 

Let us write (4.20) as 

(4.31) 

with J k  as in (4.21). Then the rate at which the 4-momentum of the rod varies, given by the 
first expression on the left of (4.31), is equal and opposite to dJk/dt only if? 

(4.32) 

That this is true (up to the term in m2a5) only if k = 3, 4 will now be shown, under the 
assumption that the metric for the rod can be expanded in the form (3.23) throughout 
space-time, including the neighbourhood of the origin. 

Let the approximate metric (3.13) represent exactly the material distribution made up  of 
the rotating rod, of constant mass and momentum, and the matter that has to be infused 
from outside into the neighbourhood of the rod in such a way as to secure the constancy of 
its mass and momentum. Then this metric must satisfy 

(4.33) 

t This statement should be compared with the criticism Peres (1960) makes on the proof by Xnfeld 
(1959) that gravitational radiation does not exist. 
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exactly. Thus, from (4.19) we have for this metric 

where 
u k  = sin wu, -cos wu, 0,O (4.35) 

by virtue of (4.10), (4.11)) (4.21) and (4.27). Formula (4.34) is true not only for the approxi- 
mate metric (3.13) but also for the exact metric (3.23). For, as mentioned earlier, the 
difference between the values of tki for these two metrics, and therefore the difference 
between the corresponding values of the extreme left of (4.34), is of order m3. Hence (4.34) 
and (4.35) show that (4.32) is true up to the term in m2a5 only i f k  = 3,4.  

T o  obtain the value of the left-hand side of (4.32) directly, without the help of Synge's 
argument, necessitates finding a suitable solution of the linear approximation for the whole 
of space-time, including the region r < max{ak,, ak,). This involves matching an internal 
solution with an external solution for a moving system, not spherically symmetric, and 
therefore extremely difficult to achieve. Such is an example of the inadequacy of the 
pseudo-tensor for use in calculation of the flux of 4-momentum from isolated radiating 
material systems. 

Thus, as far as variation of 3-momentum of the rod is concerned, the result (4.16) 
should be taken as the correct one in preference to the result (4.29). In  any case, the former 
result was achieved by the use of a real tensor having covariant properties. 
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